Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles
نویسنده
چکیده
This thesis is devoted to nonlinear control, reduction, and classification of underactuated mechanical systems. Underactuated systems are mechanical control systems with fewer controls than the number of configuration variables. Control of underactuated systems is currently an active field of research due to their broad applications in Robotics, Aerospace Vehicles, and Marine Vehicles. The examples of underactuated systems include flexible-link robots, mobile robots, walking robots, robots on mobile platforms, cars, locomotive systems, snake-type and swimming robots, acrobatic robots, aircraft, spacecraft, helicopters, satellites, surface vessels, and underwater vehicles. Based on recent surveys, control of general underactuated systems is a major open problem. Almost all real-life mechanical systems possess kinetic symmetry properties, i.e. their kinetic energy does not depend on a subset of configuration variables called external variables. In this work, I exploit such symmetry properties as a means of reducing the complexity of control design for underactuated systems. As a result, reduction and nonlinear control of high-order underactuated systems with kinetic symmetry is the main focus of this thesis. By “reduction”, we mean a procedure to reduce control design for the original underactuated system to control of a lowerorder nonlinear or mechanical system. One way to achieve such a reduction is by transforming an underactuated system to a cascade nonlinear system with structural properties. If all underactuated systems in a class can be transformed into a specific class of nonlinear systems, we refer to the transformed systems as the “normal form” of the corresponding class of underactuated systems. Our main contribution is to find explicit change of coordinates and control that transform several classes of underactuated systems, which appear in robotics and aerospace applications, into cascade nonlinear systems with structural properties that are convenient for control design purposes. The obtained cascade normal forms are three classes of nonlinear systems, namely, systems in strict feedback form, feedforward form, and nontriangular linear-quadratic form. The names of these three classes are due to the particular lower-triangular, upper-triangular, and nontriangular structure in which the state variables appear in the dynamics of the corresponding nonlinear systems. The triangular normal forms of underactuated systems can be controlled using existing backstepping and feedforwarding procedures. However, control of the
منابع مشابه
Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics
This thesis is devoted to nonlinear control, reduction, and classification of underactuated mechanical systems. Underactuated systems are mechanical control systems with fewer controls than the number of configuration variables. Control of underactuated systems is currently an active field of research due to their broad applications in Robotics, Aerospace Vehicles, and Marine Vehicles. The exam...
متن کاملTime-Invariant State Feedback Control Laws for a Special Form of Underactuated Nonlinear Systems Using Linear State Bisection
Linear state bisection is introduced as a new method to find time-invariant state feedback control laws for a special form of underactuated nonlinear systems. The specialty of the systems considered is that every unactuated state should be coupled with at least two directly actuated states. The basic idea is based on bisecting actuated states and using linear combinations with adjustable parame...
متن کاملMATLAB-based Tools for Modelling and Control of Underactuated Mechanical Systems
Underactuated systems, defined as nonlinear mechanical systems with fewer control inputs than degrees of freedom, appear in a broad range of applications including robotics, aerospace, marine and locomotive systems. Studying the complex low-order nonlinear dynamics of appropriate benchmark underactuated systems often enables us to gain insight into the principles of modelling and control of adv...
متن کاملRecursive design of finite-time convergent observers for a class of time-varying nonlinear systems
Areas of Teaching Interest: Analysis and Design of Control Systems Discrete Time Control Systems Intelligent Controls Robust Nonlinear Controls Areas of Research Interest: Robust and adaptive control of nonlinear systems Homogeneous systems theory Output feedback control Observer design and fault detection Intelligent control systems Control of nonholonomic systems Underac...
متن کاملNonlinear Control and Reduction of Underactuated Systems with Symmetry III: Input Coupling Case
In this paper, we address nonlinear control and reduction of high-order underactuated mechanical systems with kinetic symmetry and input coupling. In some aerospace vehicles, the effects of the control of the attitude dynamics appears in the translational dynamics. We present a general framework for decoupling of these effects. The decoupling is done by applying a change of coordinates in expli...
متن کامل